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Adaptive bias correction for improved
subseasonal forecasting

Soukayna Mouatadid 1 , Paulo Orenstein 2, Genevieve Flaspohler 3,4,5,
Judah Cohen 6,7, Miruna Oprescu8, Ernest Fraenkel 9 & Lester Mackey 10

Subseasonal forecasting—predicting temperature and precipitation 2 to 6
weeks ahead—is critical for effective water allocation, wildfire management,
and drought and flood mitigation. Recent international research efforts have
advanced the subseasonal capabilities of operational dynamical models, yet
temperature and precipitation prediction skills remain poor, partly due to
stubborn errors in representing atmospheric dynamics and physics inside
dynamical models. Here, to counter these errors, we introduce an adaptive
bias correction (ABC) method that combines state-of-the-art dynamical fore-
castswith observations usingmachine learning.We show that, when applied to
the leading subseasonal model from the European Centre for Medium-Range
Weather Forecasts (ECMWF), ABC improves temperature forecasting skill by
60–90% (over baseline skills of 0.18–0.25) and precipitation forecasting skill
by 40–69% (over baseline skills of 0.11–0.15) in the contiguous U.S. We couple
these performance improvements with a practical workflow to explain ABC
skill gains and identify higher-skill windows of opportunity based on specific
climate conditions.

Improving our ability to forecast both weather and climate is of
interest to many sectors of the economy and government agencies,
from the local to the national level.Weather forecasts 0–10 days ahead
and climate forecasts seasons to decades ahead are currently used
operationally in decision making, and the accuracy and reliability of
these forecasts has improved consistently in recent decades1. How-
ever, many critical applications—including water allocation, wildfire
management, and drought and flood mitigation—require subseasonal
forecasts, with lead times beyond 10 days and up to a season2,3. Given
the changing nature of the climate and the increasing frequency of
extreme weather events, there is a social and scientific consensus
regarding the importance and urgency of providing reliable sub-
seasonal forecasts4,5.

Subseasonal forecasting lies in a challenging intermediate domain
between shorter-term weather forecasting (an initial-value problem)
and longer-term climate forecasting (a boundary value problem).
Skillful subseasonal forecasting requires capturing the complex
dependence between local weather conditions, typically described by
numerical weathermodels, and global climate variables, usually part of
long-range seasonal forecasts2. The intertwined dynamics of initial-
value prediction problems and boundary forcing phenomena led
subseasonal forecasting to long be considered a predictability desert6,
more difficult than either short-term weather forecasting or long-term
climate prediction. Recent studies, however, have highlighted impor-
tant sources of predictability on subseasonal timescales, including
oscillatory modes such as El Niño–Southern Oscillation and the
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Madden–Julian oscillation (MJO), large-scale anomalies in, e.g., soil
moisture or sea ice, and external forcing4,7. These predictability sour-
ces are imperfectly understood and imperfectly represented in
weather and climate models8 and hence represent an opportunity for
more skillful subseasonal forecasting.

The challenges of subseasonal forecasting are particularly
apparent for precipitation forecasts9. Precipitation isgovernedbyboth
macro-scale dynamical processes of the atmosphere and complex
microphysical processes, some of which are still not fully understood8.
In addition, precipitation is oftentimes a very local phenomenon,
working over a much finer scale than the resolution employed by
subseasonal dynamical models. This scale incompatibility, in concert
with suboptimal process representation and incomplete process
understanding, results in dynamical models falling short of predict-
ability limits for forecasting precipitation4,8. Generating precipitation
forecasts for longer seasonal horizons is an even more daunting task.
In this case, dynamical models show considerable biases in precipita-
tion and wind fields. These biases arise from the parameterization of
key physical processes associated with deep convective cloud
systems10 and, when combined with chaotic dynamics and imperfectly
represented sources of predictability, translate into rapidly decreasing
skill for precipitation forecasts.

Bridging the gapbetween short-termand seasonal forecasting has
been the focus of several recent large-scale research efforts to advance
the subseasonal capabilities of operational physics-based models9,11,12.
However, despite these advances, dynamical models still suffer from
persistent systematic errors, which limit the skill of temperature and
precipitation forecasts for longer subseasonal lead times. Low skill at
these time horizons has a palpable practical impact on the utility of
subseasonal forecasts for policy planners and stakeholders.

To counter the observed systematic errors of physics-based
models on the subseasonal timescale, there have been parallel efforts
in recent years to demonstrate the value ofmachine learning and deep
learning methods for improved subseasonal forecasting accuracy13–25.
While these works demonstrate the promise of learned models for
subseasonal forecasting, they also highlight the complementary
strengths of physics- and learning-based approaches and the oppor-
tunity to combine those strengths to improve forecasting skill15,20–22.

To harness the complementary strengths of physics- and
learning-based models, we introduce a hybrid dynamical-learning
framework for improved subseasonal forecasting. In particular, we
learn to adaptively correct the biases of dynamical models and apply
our adaptive bias correction (ABC) to improve the skill of sub-
seasonal temperature and precipitation forecasts. ABC is an
ensemble of three low-cost, high-accuracy machine learning models
introduced in this work: Dynamical++, Climatology++, and Per-
sistence++. Each model trains only on past temperature, pre-
cipitation, and forecast data and outputs corrections for future
forecasts tailored to the site, target date, and dynamical model.
Dynamical++ and Climatology++ learn site- and date-specific off-
sets for dynamical and climatological forecasts by minimizing
forecasting error over adaptively selected training periods. Persis-
tence++ additionally accounts for recent weather trends by com-
bining lagged observations, dynamical forecasts, and climatology to
minimize historical forecasting error for each site. More details on
each component model can be found in “Methods” section. Cor-
rection alone is no substitute for improved understanding and
representation of predictability sources, and we therefore view ABC
as a complement for improved dynamical modeling. Fortunately, as
an adaptive correction, ABC automatically benefits from scientific
improvements to its dynamical model inputs while learning to
compensate for their residual systematic errors.

ABC can be applied operationally as a computationally inexpen-
sive enhancement to any dynamical model forecast, and we use this
property to substantially reduce the forecasting errors of eight

operational dynamical models, including the state-of-the-art ECMWF
model. ABC also improves upon the skill of classical and recently
developedbias corrections from the subseasonal forecasting literature
including quantile mapping26–29, locally estimated scatterplot
smoothing (LOESS)27,30, and neural network22 approaches. We couple
these performance improvements with a practical workflow for
explaining ABC skill gains using Cohort Shapley31 and identifying
higher-skill windows of opportunity5 based on relevant climate vari-
ables. To facilitate future deployment and development, we release
our ABC model and workflow code through the sub-
seasonal_toolkit Python package.

Results
Improved precipitation and temperature prediction with adap-
tive bias correction
Figure 1 highlights the advantage of ABC over raw dynamical models
when forecasting accumulated precipitation and averaged tempera-
ture in the contiguous U.S. Here, ABC is applied to the leading sub-
seasonal model, ECMWF, to each of seven operational models
participating in the Subseasonal Experiment [SubX11], and to the mean
of the SubX models. Subseasonal forecasting skill, measured by
uncentered anomaly correlation, is evaluated at two forecast horizons,
weeks 3–4 and weeks 5–6, and averaged over all available forecast
dates in the 4-year spanof 2018–2021.We find that, for eachdynamical
model input and forecasting task, ABC leads to a pronounced
improvement in skill. For example, when applied to the U.S. opera-
tional Climate Forecast System Version 2 (CFSv2), ABC improves
temperature forecasting skill by 109-289% (over baseline skills of
0.08–0.17) and precipitation skill by 165–253% (over baseline skills of
0.05–0.07). When applied to the leading ECMWF model, ABC
improves temperature skill by 60–90% (over baseline skills of
0.18–0.25) and precipitation skill by 40–69% (over baseline skills of
0.11–0.15). Moreover, for precipitation, even lower-skill models like
CCSM4 have improved skill that is comparable to the best dynamical
model after the application of ABC. Overall—despite significant varia-
bility in dynamical model skill—ABC consistently reduces the sys-
tematic errors of its input model, bringing forecasts closer to
observations for each target variable and timehorizon. Similar forecast
improvement is observed when stratifying skill by season (see Sup-
plementary Fig. S1).

In Supplementary Fig. S2, we compare ABC with three additional
subseasonal debiasing baselines (detailed in “Methods” section):
quantile mapping26–29, LOESS debiasing27,30, and a recently proposed
neural network debiasing scheme trained jointly on temperature and
precipitation inputs [NN-A22]. Given the same dynamical model inputs,
ABC improves upon the skill of each baseline for each target variable
and forecast horizon.

We next examine the spatial distribution of skill for CFSv2,
ECMWF, and their ABC-corrected counterparts at three forecast hor-
izons in Fig. 2. At the shorter-term horizon of weeks 1–2, both CFSv2
and ECMWFhave reasonably high skill throughout the contiguous U.S.
However, skill drops precipitously for both models when moving to
the subseasonal forecast horizons (weeks 3–4 and 5–6). This degra-
dation is particularly striking for precipitation, where prediction skill
drops to zero or to negative values in the central and northeastern
parts of the U.S. For temperature prediction, CFSv2 has a skill of zero
across a broad region of the East, while ECMWF produces isolated
pockets of zero skill in the west. At these subseasonal timescales, ABC
provides consistent improvements across the U.S. that either double
or triple themean skill of CFSv2 and increase themean skill of ECMWF
by 40–90% (over baseline skills of 0.11–0.25). Similar improvements
are observed when ABC is applied to the SubX multimodel mean (see
Supplementary Fig. S3). In addition, common skill patterns across
models are apparent that are consistent with higher precipitation
predictability in the Western U.S. than in the Eastern U.S. and higher
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temperature predictability on the coasts than in the center of the
country.

Notably, ABC also improves over standard operational debiasing
protocols (labeled debiased CFSv2 and debiased ECMWF in Fig. 2),
tripling the average precipitation skill of debiased CFSv2 and increas-
ing that of debiased ECMWF by 70% (over a baseline skill of 0.11). As
seen in Supplementary Fig. S4, ABC additionally improves upon the
quantile mapping, LOESS, and neural network debiasing baselines,
doubling the ECMWF precipitation skill of the best-performing base-
line and improving the ECMWF temperature skill by 37% (over a
baseline skill of 0.25).

A practical implication of these improvements for downstream
decision-makers is an expanded geographic range for actionable skill,
defined here as spatial skill above a given sufficiency threshold. For
example, in Fig. 3, we vary the weeks 5–6 sufficiency threshold from 0
to0.6 and find thatABC consistently boosts the number of localeswith
actionable skill over both raw and operationally debiased CFSv2 and
ECMWF. We observe similar gains for weeks 3–4 in Supplementary
Fig. S5 and for ABC correction of the SubX multimodel mean in Sup-
plementary Fig. S6.

We emphasize that our results, like those of refs. 21,22,27–29, focus
on improved deterministic forecasting: outputting a more accurate
point estimate of a future weather variable. The complementary para-
digm of probabilistic forecasting instead predicts the distribution of a
weather variable, i.e., the probability that a variable will fall above or
below any given threshold. Ideally, one would employ a tailored
approach to probabilistic debiasing that directly optimizes a probabil-
istic skill metric to output a corrected distribution. However, there is a
simple, inexpensiveway toconvert theoutputofABC intoaprobabilistic
forecast. Given any ensemble of dynamical model forecasts (e.g., the
control and perturbed forecasts routinely generated operationally), one
can train ABC on the ensemblemean, apply the learned bias corrections
to each ensemble member individually, and use the empirical distribu-
tion of those bias-corrected forecasts as the probabilistic forecasting
estimate. In Supplementary Figs. S7–S10, we present two standard
probabilistic skill metrics—the continuous ranked probability score
(CRPS) and the Brier skill score (BSS) for above normal observations32,
defined in Supplementary Methods—and observe that, for each target
variable, forecast horizon, and season, ABC improves upon the BSS and
CRPS of ECMWF, LOESS debiasing, and quantile mapping debiasing.

Fig. 1 | Average forecast skill for dynamicalmodels (red) and their adaptive bias
correction (ABC) counterparts (blue). Across the contiguous U.S. and the years
2018–2021, ABC provides a pronounced improvement in skill for each SubX or

ECMWF dynamical model input and each forecasting task (a–d). The error bars
display 95% bootstrap confidence intervals.Models without forecast data forweeks
5–6 are omitted from the bottom panels.
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As evidenced in Fig. 4, an important component of the overall
accuracy of ABC is the reduction of the systematic bias introduced by
dynamical model deficiencies. Figure 4 presents the spatial distribu-
tion of this bias by plotting the average difference between forecasts
and observations over all forecast dates. The precipitationmaps reveal
a wet bias over the northern half of the U.S. for CFSv2 (average bias:
8.32mm) and a dry bias over the south-east part of the U.S. for ECMWF
(average bias: −8.12mm). In this case, ABC eliminates the CFSv2 wet
bias (average bias: −0.46mm) and slightly alleviates the ECMWF dry
bias (average bias: −6.24mm). For temperature, we observe a cold bias
over the eastern half of the U.S. for CFSv2 (average bias: −1.2 °C) and
noticeamixedpatternof cold andwarmbiases over thewesternhalf of
the U.S for ECMWF (average bias: −0.30 °C). In this case, although ABC
does not eliminate these biases entirely, it reduces the magnitude of

the cold eastern bias by bringing CFSv2 forecasts closer to observa-
tions (average bias: −0.18 °C) and reduces the mixed ECMWF bias
(average bias: −0.04 °C).

We observe comparable bias reductions when ABC is applied to
the SubX multimodel mean in Supplementary Fig. S11, improved
dampening of bias relative to quantile mapping, LOESS, and neural
network baselines in Supplementary Fig. S12, and improved dampen-
ing of bias relative to operationally debiased temperature and CFSv2
precipitation in Supplementary Fig. S13. Since each bias correction is
based on historical data and weather is non-stationary, the remaining
residual bias patterns may be indicative of recent regional shifts in
average temperature or precipitation, e.g., decreased average pre-
cipitation in the Southeastern U.S. or increased average temperature
on the country’s coasts.

Fig. 2 | Spatial skill distribution of dynamical models and their adaptive bias
corrections.Across the contiguousU.S. and the years 2018–2021, dynamicalmodel
skill drops precipitously at subseasonal timescales (weeks 3–4 and 5–6), but
adaptive bias correction (ABC) attenuates the degradation, doubling or tripling the
skill of CFSv2 (a, b) and boosting ECMWF skill 40–90% over baseline skills of

0.11–0.25 (c, d). Taking the same raw model forecasts as input, ABC also provides
consistent improvements over operational debiasing protocols, tripling the pre-
cipitation skill of debiased CFSv2 and improving that of debiased ECMWF by 70%
(over a baseline skill of 0.11). The average temporal skill over all forecast dates is
displayed above each map.
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Identifying statistical forecasts of opportunity
The results presented so far evaluate overall model skill, averaged
across all forecast dates. However, there is a growing appreciation that
subseasonal forecasts can benefit from selective deployment during
“windows of opportunity,” periods defined by observable climate
conditions in which specific forecasters are likely to have higher skill5.
In this section,weproposea practical opportunistic ABCworkflow that
uses a candidate set of explanatory variables to identify windows in
which ABC is especially likely to improve upon a baseline model. The
sameworkflowcan be used to explain the skill improvements achieved
by ABC in terms of the explanatory meteorological variables.

The opportunistic ABC workflow is based on the equitable credit
assignment principle of Shapley33 and measures the impact of expla-
natory variables on individual forecasts using Cohort Shapley31 and
overall variable importance using Shapley effects34 (see “Methods”
section formoredetails).We use these Shapleymeasures to determine
the contexts in which ABC offers improvements, in terms of climate
variables with known relevance for subseasonal forecasting accuracy.
As a running example, we use our workflow to explain the skill differ-
ences between ABC-ECMWF and debiased ECMWF when predicting
precipitation in weeks 3–4. As our candidate explanatory variables, we
use Northern Hemisphere geopotential heights (HGT) at 500 and
10 hPa, the phase of the MJO, Northern Hemisphere sea ice con-
centration, global sea surface temperatures, the multivariate El

Niño–Southern Oscillation index (MEI.v2)35, and the target month. All
variables are lagged as described in “Methods” section to ensure that
they are observable on the forecast issuance date.

We first use Shapley effects to determine the overall importance
of each variable in explaining the precipitation skill improvements of
ABC-ECMWF. As shown in Supplementary Fig. S14, themost important
explanatory variables are the first two principal components (PCs) of
500 hPa geopotential height, the MJO phase, the second PC of 10 hPa
geopotential height, and the first PC of sea ice concentration. These
variables are consistent with the literature exploring the dominant
contributions to subseasonal precipitation. The 500hPa geopotential
height plays a crucial role in conveying information about the thermal
structure of the atmosphere and indicates synoptic circulation
changes36. The MJO phase influences weather and climate phenomena
within both the tropics and extratropics, resulting in a global influence
of MJO in modulating temperature and precipitation37. The 10 hPa
geopotential height is a known indicator of polar vortex variability
leading to lagged impacts on sea level pressure, surface temperature,
and precipitation2. Finally, sea ice concentration has a strong
impact on surface turbulent heat fluxes and therefore near-surface
temperatures38.

We next useCohort Shapley to identify the contexts inwhich each
variable has the greatest impact on skill. For example, Fig. 5 sum-
marizes the impact of the first 500 hPa geopotential heights PC

Fig. 3 | Fraction of contiguous U.S. with 2018–2021 spatial skill above a given
threshold. For each forecasting task and dynamical model input (a–d), adaptive
bias correction (ABC) consistently expands the geographic range of higher skill

over raw and operationally debiased dynamical models. The error bars display 95%
bootstrap confidence intervals.
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(hgt_500_pc1) on ABC-ECMWF skill improvement. This display
divides our forecasts into 10 bins, determined by the deciles of
hgt_500_pc1, and computes the probability of positive impact in
each bin. We find that hgt_500_pc1 is most likely to have a positive
impact on skill improvement in decile 1, which features a positive
Arctic Oscillation (AO) pattern, and least likely in decile 9, which fea-
tures AO in the opposite phase. The ABC-ECMWF forecast most
impacted byhgt_500_pc1 in decile 1 is alsopreceded by a positive AO
pattern and replaces the wet debiased ECMWF forecast with a more
skillful dry pattern in the west. Similarly, Fig. 6 summarizes the impact
of the MJO phase (mjo_phase) on ABC-ECMWF skill improvement.
Importantly, while skill improvement is sometimes achieved with an
especially skillful ABC forecast (as in Fig. 5), it can also be achieved by
recovering from an especially poor baseline forecast. The latter is what
we see at the bottom of Fig. 6, where the highest impact ABC forecast
avoids the strongly negative skill of the baseline debiased ECMWF
forecast.

Finally, we use the identified contexts to define windows of
opportunity for operational deployment of ABC. Indeed, since all
explanatory variables are observable on the forecast issuance date,
one can selectively apply ABC when multiple variables are likely to
have a positive impact on skill and otherwise issue a default, standard
forecast (e.g., debiased ECMWF). We call this selective forecasting
model opportunistic ABC. Howmany high-impact variables should we
require when defining these windows of opportunity? We say a vari-
able is “high-impact” if the positive impact probability for its decile or
bin is within the confidence interval of the highest probability overall.
Requiring a larger number of high-impact variables will tend to
increase the skill gains of ABC but simultaneously reduce the number
of dates onwhichABC is deployed. Figure 7 illustrates this trade-off for
ABC-ECMWF and shows that opportunistic ABC skill is maximized
when twoormore high-impact variables are required.With this choice,
ABC is used for approximately 81%of forecasts anddebiased ECMWF is
used for the remainder. Figure 8 summarizes the complete opportu-
nistic ABC workflow, from the identification of windows of

opportunity through the selective deployment of either ABC or a
default baseline forecast for a given target date.

Discussion
Dynamical models have shown increasing skill in accurately forecast-
ing the weather39, but they still contain systematic biases that com-
pound on subseasonal timescales and suppress forecast skill40–43. ABC
learns to correct these biases by adaptively integrating dynamical
forecasts, historical observations, and recent weather trends. When
applied to the leading subseasonalmodel fromECMWF, ABC improves
forecast skill by 60–90% (over baseline skills of 0.18–0.25) for pre-
cipitation and 40–69% (over baseline skills of 0.11–0.15) for tempera-
ture. The same approach substantially reduces the forecasting errors
of seven additional operational subseasonal forecastingmodels aswell
as their multimodel mean, with less skillful input models performing
nearly as well as the ECMWFmodel after applying the ABC correction.
This finding suggests that systematic errors in dynamical models are a
primary contributor to observed skill differences and that ABC pro-
vides an effective mechanism for reducing these heterogeneous
errors. Because ABC is also simple to implement and deploy in real-
time operational settings, ABC represents a computationally inex-
pensive strategy for upgrading operational models, while conserving
valuable human resources.

While the learned correction of systematic errors can play an
important role in skill improvement, it is no substitute for scientific
improvements in our understanding and representation of the pro-
cesses underlying subseasonal predictability. As such,weviewABCas a
complement for improved dynamical model development. For-
tunately, ABC is designed to be adaptive to model changes. As
operational models are upgraded, process models improve, and sys-
tematic biases evolve, our ABC training protocol is designed to ingest
the upgradedmodel forecasts and hindcasts reflecting those changes.

To capitalize on higher-skill forecasts of opportunity,we have also
introduced an opportunistic ABC workflow that explains the skill
improvements of ABC in terms of a candidate set of environmental

Fig. 4 | Spatial distribution ofmodel bias over the years 2018–2021.Across the contiguousU.S., adaptive bias correction (ABC) reduces the systematicmodel bias of its
dynamical model input for both precipitation (a, c) and temperature (b, d).
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variables, identifies high-probability windows of opportunity based on
those variables, and selectively deploys either ABC or a baseline fore-
cast to maximize expected skill.The same workflow can be applied to
explain the skill improvements of any forecasting model and, unlike
other popular explanation tools44,45, avoids expensive model retrain-
ing, requires no generation of additional forecasts beyond those rou-
tinely generated for operational or hindcast use, and allows for
explanations in terms of variables that were not explicitly used in
training the model.

Overall, we find that correcting dynamical forecasts using ABC
yields aneffective and scalable strategy to optimize the skill of the next
generation of subseasonal forecasting models. We anticipate that our
hybrid dynamical-learning framework will benefit both research and
operations, and we release our open-source code to facilitate future
adoption and development.

Methods
Dataset
All data used in this work was obtained from the Sub-
seasonalClimateUSA dataset46. The spatial variables were inter-
polated onto a 1.5° × 1.5° latitude-longitude grid, and all daily
observations (with two exceptions noted below) were aggregated
into 2-week moving averages. As ground-truth measurements,
we extracted daily gridded observations of average 2-meter

temperature in °C47 and precipitation in mm48–50. For our explana-
tory variables, we obtained the daily PCs of 10 and 500 hPa strato-
spheric geopotential height51 extracted from global 1948–2010
loadings, the daily PCs of sea surface temperature and sea ice
concentration52 using global 1981–2010 loadings, the daily MJO
phase53, and the bimonthly MEI.v235,54,55. Precipitation was summed
over two-week periods, and the MJO phase was not aggregated.
Finally, we extracted twice-weekly ensemble mean forecasts of
temperature and precipitation from the ECMWF S2S dynamical
model6 and ensemble mean forecasts of temperature and pre-
cipitation from seven models participating in the SubX project,
including five coupled atmosphere-ocean-land dynamical models
(NCEP-CFSv2, GMAO-GEOS, NRL-NESM, RSMAS-CCSM4, ESRL-FI)
and two models with atmosphere and land components forced with
prescribed sea surface temperatures (EMC-GEFS, ECCC-GEM)11. The
SubX multimodel mean forecast was obtained by calculating, for
each target date, themean prediction over all available SubXmodels
using the most recent forecast available from each model within a
lookback window of size equal to 6 days. Each candidate SubX
model is represented by its ensemble mean forecast. Two sets of
candidate models are considered. When calculating SubX ensemble
mean for weeks 1–2 and weeks 3–4, we consider NCEP-CFSv2,
GMAO-GEOS, NRL-NESM, RSMAS-CCSM4, ESRL-FI, EMC-GEFS, and
ECCC-GEM. When generating mean forecast for weeks 5–6, we

Fig. 5 | Impact of the first 500hPa geopotential heights principal component
(hgt_500_pc1) on adaptive bias correction (ABC) skill improvement. a To sum-
marize the impact of hgt_500_pc1 on ABC-ECMWF skill improvement for pre-
cipitation weeks 3–4, we divide our forecasts into 10 bins, determined by the
deciles of hgt_500_pc1, and display above each bin map the probability of posi-
tive impact in each bin along with a 95% bootstrap confidence interval. The highest
probability of positive impact is shown in blue, and the lowest probability of

positive impact is shown in red. We find that hgt_500_pc1 is most likely to have a
positive impact on skill improvement in decile 1 which features a positive Arctic
Oscillation (AO) pattern, and least likely in decile 9, which features AO in the
opposite phase. b The forecast most impacted by hgt_500_pc1 in decile 1 is also
preceded by a positive AO pattern and replaces the wet debiased ECMWF forecast
with a more skillful dry pattern in the west.
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consider NCEP-CFSv2, GMAO-GEOS, NRL-NESM, and RSMAS-CCSM4
only, as the remaining models do not produce forecast data for
weeks 5–6.

Forecasting tasks and skill assessment
We consider two prediction targets: average temperature (°C) and
accumulated precipitation (mm) over a 2-week period. These variables
are forecasted at two time horizons: 15–28 days ahead (weeks 3–4) and
29–42 days ahead (weeks 5–6). We forecast each variable at G = 376
grid points on a 1.5° × 1.5° grid across the contiguous U.S., bounded by
latitudes 25N–50N and longitudes 125W–67W. To provide the most
realistic assessment of forecasting skill56, all predictions in this study
are formed in a real forecast manner that mimics operational use. In
particular, to produce a forecast for a given target date, all learning-
based models are trained and tuned only on data observable on the
corresponding forecast issuance date.

For evaluation, we adopt the exact protocol of the recent Sub-
seasonal Climate Forecast Rodeo competition, run by the U.S. Bureau
of Reclamation in partnership with the National Oceanic and Atmo-
spheric Administration, U.S. Geological Survey, U.S. Army Corps of
Engineers, and California Department of Water Resources57. In parti-
cular, for a 2-week period starting on date t, let yt 2 RG denote the
vector of ground-truth measurements yt,g for each grid point g and

ŷt 2 RG denote a corresponding vector of forecasts. In addition,
define climatology ct as the average ground-truth values for a given
month and day over the years 1981–2010. We evaluate each forecast
using uncentered anomaly correlation skill57,58,

skillðŷt , ytÞ=
hŷt � ct , yt � cti

k ŷt � ctk2� k yt � ctk2
2 ½�1,1�, ð1Þ

with a larger value indicating higher quality. For a collection of target
dates, we report average skill using progressive validation59 to mimic
operational use.

Operational ECMWF, CFSv2, and SubX debiasing
We bias correct a uniformly weighted ensemble of the ECMWF control
forecast and its 50 ensemble forecasts following the ECMWF opera-
tional protocol60: for each target forecast date and grid point, we bias
correct the 51-member ensemble forecast by subtracting the equal-
weighted 11-member ECMWF ensemble reforecast averaged over all
dates from the last 20 years within ±6 days from the target month-day
combination and then adding the average ground-truth measurement
over the same dates.

Following ref. 57, we bias correct a uniformly weighted 32-
member CFSv2 ensemble forecast, formed from four model

Fig. 6 | Impactof theMadden–JulianOscillationphase (mjo_phase) onadaptive
bias correction (ABC) skill improvement. a To summarize the impact of mjo_-
phase onABC-ECMWF skill improvement for precipitationweeks 3–4,we compute
the probability of positive impact and an associated 95% bootstrap confidence
interval in each lagged MJO phase bin and adopt the methodology of ref. 53 to
create an MJO phase space diagram. The highest probabilities of positive impact

(those falling within the confidence interval of the highest probability overall) are
shown in blue and the lowest probability of positive impact is shown in red.We find
that positive impact on skill improvement is most common in phases 2, 4, 5, and 8
and least common in phase 1. b The forecast most impacted by mjo_phase in
phases 2, 4, 5, and 8 avoids the strongly negative skill of the debiased ECMWF
baseline.
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initializations averaged over the eight most recent 6-hourly issuances,
in the following way: for each target forecast date and grid point, we
bias correct the 32-member ensemble forecast by subtracting the
equal-weighted 8-member CFSv2 ensemble hindcast averaged over all
dates from 1999 to 2010 inclusive matching the target day and month
and then adding the average ground-truth measurement over the
same dates. We bias correct the SubX multimodel mean forecast in an
identical manner, using the SubX multimodel mean reforecasts from
1999 to 2010 inclusive.

Adaptive bias correction
ABC is a uniformly weighted ensemble of three machine learning
models, Dynamical++, Climatology++, and Persistence++, detailed
below. A schematic of ABCmodel input and output data can be found
in Supplementary Fig. S15, and supplementary algorithmdetails can be
found in Supplementary Methods.

Dynamical++ (AlgorithmS1) is a three-step approach to dynamical
model correction: (i) adaptively select a window of observations
around the target day of year and a range of issuance dates and lead
times for ensembling based on recent historical performance, (ii) form
an ensemble mean forecast by averaging over the selected range of
issuance dates and lead times, and (iii) bias correct the ensemble
forecast for each site by adding the mean value of the target variable
and subtracting the mean forecast over the selected window of
observations. Unlike standard debiasing strategies, which employ
static ensembling and bias correction, Dynamical++ adapts to het-
erogeneity in forecasting error by learning to vary the amount of
ensembling and the size of the observation window over time.

For a given target date t⋆ and lead time l⋆, the Dynamical++
training set T is restricted to data fully observable one day prior to the
issuance date, that is, to dates t ≤ t⋆ − l⋆ − L − 1 where L = 14 represents
the forecast period length. For each target date, Dynamical++ is run
with the hyperparameter configuration that achieved the smallest
mean progressive geographic root mean squared error (RMSE) over
the preceding 3 years. Here, progressive indicates that each candidate
model forecast is generated using all training data observable prior to
the associated forecast issuance date. Every configuration with
spans∈ {0, 14, 28, 35} (the span is the number of days included on each
side of the target day of year), number of averaged issuance dates
d⋆∈ {1, 7, 14, 28, 42}, and leadsL= f29g for theweeks 5–6 lead time and
L 2 ff15g,½15,22�,½0,29�,f29gg the weeks 3–4 lead time was considered.

Inspired by climatology, Climatology++ (Algorithm S2) makes no
use of the dynamical forecast and rather outputs the historical geo-
graphicmedian (if the user-supplied loss function is RMSE) ormean (if

loss =MSE) of its target variables over all days in a window around the
target day of year. Unlike a static climatology, Climatology++ adapts
to target variable heterogeneity by learning to vary the size of the
observation window and the number of training years over time.

For a given target date t⋆ and lead time l⋆, the Climatology++
training set T is restricted to data fully observable one day prior to the
issuance date, that is, to dates t ≤ t⋆ − l⋆ − L − 1 where L = 14 represents
the forecast period length. For each target date, Climatology++ is run
with the hyperparameter configuration that achieved the smallest
mean progressive geographic RMSE over the preceding 3 years. All
spans s∈ {0, 1, 7, 10} were considered. All precipitation configurations
used the geographic MSE loss and all available training years. All
temperature configurations used the geographic RMSE loss and either
all available training years or Y = 29. For shorter than subseasonal lead
times (e.g., weeks 1–2), Climatology++ is excluded from the ABC
forecast and only Dynamical++ and Persistence++ are averaged.

Persistence++ (Algorithm S3) accounts for recent weather trends
by fitting an ordinary least-squares regression per grid point to opti-
mally combine lagged temperature or precipitation measurements,
climatology, and a dynamical ensemble forecast. For a given target
date t⋆ and lead time l⋆, the Persistence++ training set T is restricted
to data fully observable one day prior to the issuance date, that is, to
dates t ≤ t⋆ − l⋆ − L − 1 where L = 14 represents the forecast period
length. In Algorithm S3, the setL represents the full set of subseasonal
lead times available in the dataset, i.e., L= ½0,29�.

Debiasing baselines
NN-A22 learns a non-linear mapping between daily corrected CFSv2
precipitation and temperature and observed precipitation and tem-
perature for the contiguous U.S. In particular, the model’s inputs
(predictors) consist of CFSv2 bias-corrected ensemble mean for total
precipitation and temperature anomalies as well as the observed cli-
matologies for precipitation and temperature. The model’s target
variables (predictands) are observed temperature anomalies and total
precipitation. Both daily target variables are converted to 2-weekly
mean and 2-weekly total and are predicted simultaneously for the
entire forecast domain. NN-A is a neural network with a single hidden
layer consisting of K = 200 hidden neurons. This architecture enables
the model to account for both non-linear relationships among input
and target variables as well as their spatial dependency and the co-
variability that characterize these variables. For a given lead time, the
NN-A model was trained on all available data from January 2000 to
December 2017 (inclusive) save for thosedates thatwere unobservable
on the issuancedate associatedwith a January 1, 2018, target date. Each

a. Number of high-impact variables b. Opportunistic ABC skill

Fig. 7 | Defining windows of opportunity for opportunistic adaptive bias cor-
rection (ABC) forecasting. Here we focus on forecasting precipitation in weeks
3–4. a When more explanatory variables fall into high-impact deciles or bins (e.g.,
the blue bins of Figs. 5 and 6), the mean skill of ABC-ECMWF improves, but the

percentage of forecasts usingABCdeclines.bThe overall skill of opportunistic ABC
ismaximizedwhenABC-ECMWF isdeployed for target dateswith twoormorehigh-
impact variables and standard debiased ECMWF is deployed otherwise.
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NN-Amodel was trained using the Adamalgorithm61 for 10,001 epochs
without dropout as in ref. 22 and used relu activations and the default
batch size (32) and learning rate (0.001) from Tensorflow62.

LOESS debiasing30 adds a correction to a dynamical model fore-
cast using LOESS. Using all dates prior to 2018 with available ground-

truthmeasurements and (re)forecast data, themeasurements for each
month-day combination (save February 29) are averaged, resulting in a
sequence of 365 values. The same is done for the forecasts. A local
linear regression is run on each of these sequences using a fraction of
0.1 of the points to fit each value. The end result is two smoothed

Fig. 8 | Schematic of the opportunistic adaptive bias correction (ABC) workflow.Opportunistic ABC uses historical ABC and baseline forecasts and a candidate set of
explanatory variables to identify windows of opportunity for selective deployment of ABC in an operational setting.
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sequences of 365 values, onewith themeasurement data and the other
one with forecast data. The entrywise difference (in the case of tem-
perature) or ratio (in the case of precipitation) between these
sequences is used as a correction to be added (in the case of tem-
perature) or multiplied (in the case of precipitation) to the forecasts
made in 2018 andbeyond, based on the target forecast day andmonth.
Note that the locality of the smoothed corrections, which only use
consecutive days in the calendar year and do not wrap around from
December to January, ensures that every forecast is made using only
training data observable on the forecast issuance date.

Quantilemapping26 corrects a base dynamical forecast by aligning
the quantiles of forecast and measurement data. For our training set,
we use all dates prior to 2018 with available ground-truth measure-
ments and (re)forecast data. For a given grid point, target date, and
dynamical model forecast, we first identify the quantile rank of
the forecasted value amongst all training set forecasts issued for the
same month-day combination. If the quantile rank exceeds 90%,
we replace its value with 90%; if the quantile rank falls below 10%, we
replace its value with 10%. We then add to the forecast the corre-
sponding quantile of the training set measurements for the target
month anddayand subtract the corresponding quantile of the training
set forecasts for the targetmonth and day. In the case of precipitation,
if the resulting value is negative, we set the forecast to zero.

Cohort Shapley and Shapley effects
Cohort Shapley and Shapley effects use Shapley values to quantify the
impact of variables on outcomes. Shapley values are based on work in
game theory33 exploring how to assign appropriate rewards to indivi-
duals who contribute to anoutcomeaspart of a team.When applied to
explanatory variables, Shapley values can be thought of as roughly
analogous to the coefficients in a linear regression. Importantly, unlike
linear regression coefficients, Shapley values are applicable in settings
where the interaction among variables is highly non-linear. The pro-
cedure for computing Shapley values involves testing how much a
change to one explanatory variable influences a target outcome. These
tests are carried out bymeasuring how the target outcome varieswhen
a given explanatory variable changes in the context of subsets of other
explanatory variables.

Shapley effects34 are a specific instantiationof the general Shapley
value principle, designed for measuring variable importance. For a
given outcome variable to be explained (for example, the skill differ-
ence between ABC-ECMWF and operationally debiased ECMWF mea-
sured on each forecast date) and a collection of candidate explanatory
variables (for example, relevant meteorological variables observed at
the time of each forecast’s issuance), the Shapley effects are overall
measures of variable importance that quantify how much of the out-
come variable’s variance is explained by each candidate explanatory
variable. Cohort Shapley values31 provide a more granular application
of Shapley values by quantifying the impact of each explanatory vari-
able on the measured outcome of each individual forecast.

Opportunistic ABC workflow
Here we detail the steps of the opportunistic ABCworkflow illustrated
in Fig. 8 using ECMWF as an example of dynamical input. The same
workflow applies to any other dynamical input.
1. Identify a set of V candidate explanatory variables. Here we use

the temporal variables enumerated in ref. 15 (Fig. 2) augmented
with the first two PCs of 500hPa geopotential heights and the
target month. To ensure that the workflow can be deployed
operationally,weuse laggedobservationswith lags chosen so that
eachvariable is observableon the forecast issuance date.MEI.v2 is
lagged by 45 days when forecasting weeks 3–4 and by 59 days for
weeks 5–6. The other variables are lagged by 30 days for weeks
3–4 and by 44 days for weeks 5–6.

2. Compute the temporal skill difference between ABC-ECMWF and
debiased ECMWF for each target date in the evaluation period.

3. For each continuous explanatory variable (e.g., hgt_500_pc2),
divide the evaluation period forecasts into 10 bins, determined by
the deciles of the explanatory variable. For each categorical vari-
able (e.g., mjo_phase), divide the forecasts into bins determined
by the categories (e.g., MJO phases).

4. Use the cohortshapley Python package to compute overall
variable importance (measured by Shapley effects) and forecast-
specific variable impact values explaining the skill differences.

5. Within each variable bin, compute the fraction of forecasts with
positive Cohort Shapley impact values. Report that fraction as an
estimate of the probability of positive variable impact, and com-
pute a 95%bootstrap confidence interval. Flag all bin probabilities
within the confidence interval of the highest probability bin as
high impact; similarly, flag all bin probabilities within the con-
fidence interval of the lowest probability bin as low impact. The
remaining bins—those that fall outside of both confidence inter-
vals—have an intermediate impact and are not flagged as either
low or high impact. Visualize and interpret the highest and lowest
impact bins.

6. Identify the forecastmost impacted by the explanatory variable in
the high-impact bins. Visualize the ABC-ECMWF and debiased
ECMWF forecasts and the associated explanatory variable for that
target date.

7. For each k∈ {0,…,V}, compute opportunistic ABC skill when k or
more explanatory variables fall into high-impact bins. Let k⋆

represent the integer at which opportunistic ABC skill is
maximized.

8. At each future forecast issuance date, deploy ABC-ECMWF if k⋆ or
more explanatory variables fall into high-impact bins and deploy
debiased ECMWF otherwise.

Data availability
The SubseasonalClimateUSA dataset used in this study has been
deposited on Microsoft Azure and is available for download via the
subseasonal_data Python package: https://github.com/microsoft/
subseasonal_data. This work is based on S2S data. S2S is a joint initia-
tive of the World Weather Research Programme (WWRP) and the
World Climate Research Programme (WCRP). The original S2S data-
base is hosted at ECMWF as an extension of the TIGGE database. We
acknowledge the agencies that support the SubX system, andwe thank
the climate modeling groups (Environment Canada, NASA, NOAA/
NCEP, NRL and University of Miami) for producing and making avail-
able their model output. NOAA/MAPP, ONR, NASA, NOAA/NWS jointly
provided coordinating support and led the development of the SubX
system. Source Data are provided with this paper.

Code availability
Python 3 code replicating all experiments and analyses in this work is
available at https://github.com/microsoft/subseasonal_toolkit.
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